Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Clin Endocrinol Metab ; 107(9): 2403-2410, 2022 08 18.
Article in English | MEDLINE | ID: covidwho-2252017

ABSTRACT

UK Biobank is an intensively characterized prospective study of 500 000 men and women, aged 40 to 69 years when recruited, between 2006 and 2010, from the general population of the United Kingdom. Established as an open-access resource for researchers worldwide to perform health research that is in the public interest, UK Biobank has collected (and continues to collect) a vast amount of data on genetic, physiological, lifestyle, and environmental factors, with prolonged follow-up of heath conditions through linkage to administrative electronic health records. The study has already demonstrated its unique value in enabling research into the determinants of common endocrine and metabolic diseases. The importance of UK Biobank, heralded as a flagship project for UK health research, will only increase over time as the number of incident disease events accrue, and the study is enhanced with additional data from blood assays (such as whole-genome sequencing, metabolomics, and proteomics), wearable technologies (including physical activity and cardiac monitors), and body imaging (magnetic resonance imaging and dual-energy X-ray absorptiometry). This unique research resource is likely to transform our understanding of the causes, diagnosis, and treatment of many endocrine and metabolic disorders.


Subject(s)
Biological Specimen Banks , Metabolic Diseases , Female , Humans , Life Style , Male , Metabolic Diseases/diagnosis , Metabolic Diseases/epidemiology , Metabolic Diseases/therapy , Prospective Studies , United Kingdom/epidemiology
2.
Sci Rep ; 13(1): 496, 2023 01 10.
Article in English | MEDLINE | ID: covidwho-2185979

ABSTRACT

Understanding the genetic and environmental risk factors for serious bacterial infections in ageing populations remains incomplete. Utilising the UK Biobank (UKB), a prospective cohort study of 500,000 adults aged 40-69 years at recruitment (2006-2010), can help address this. Partial implementation of such a system helped groups around the world make rapid progress understanding risk factors for SARS-CoV-2 infection and COVID-19, with insights appearing as early as May 2020. In principle, such approaches could also to be used for bacterial isolations. Here we report feasibility testing of linking an England-wide dataset of microbial reporting to UKB participants, to enable characterisation of microbial infections within the UKB Cohort. These records pertain mainly to bacterial isolations; SARS-CoV-2 isolations were not included. Microbiological infections occurring in patients in England, as recorded in the Public Health England second generation surveillance system (SGSS), were linked to UKB participants using pseudonymised identifiers. By January 2015, ascertainment of laboratory reports from UKB participants by SGSS was estimated at 98%. 4.5% of English UKB participants had a positive microbiological isolate in 2015. Half of UKB isolates came from 12 laboratories, and 70% from 21 laboratories. Incidence rate ratios for microbial isolation, which is indicative of serious infection, from the UKB cohort relative to the comparably aged general population ranged from 0.6 to 1, compatible with the previously described healthy participant bias in UKB. Data on microbial isolations can be linked to UKB participants from January 2015 onwards. This linked data would offer new opportunities for research into the role of bacterial agents on health and disease in middle to-old age.


Subject(s)
COVID-19 , Adult , Humans , COVID-19/epidemiology , SARS-CoV-2 , Laboratories , Biological Specimen Banks , Prospective Studies , England/epidemiology
3.
Nature ; 604(7907): 697-707, 2022 04.
Article in English | MEDLINE | ID: covidwho-1730297

ABSTRACT

There is strong evidence of brain-related abnormalities in COVID-191-13. However, it remains unknown whether the impact of SARS-CoV-2 infection can be detected in milder cases, and whether this can reveal possible mechanisms contributing to brain pathology. Here we investigated brain changes in 785 participants of UK Biobank (aged 51-81 years) who were imaged twice using magnetic resonance imaging, including 401 cases who tested positive for infection with SARS-CoV-2 between their two scans-with 141 days on average separating their diagnosis and the second scan-as well as 384 controls. The availability of pre-infection imaging data reduces the likelihood of pre-existing risk factors being misinterpreted as disease effects. We identified significant longitudinal effects when comparing the two groups, including (1) a greater reduction in grey matter thickness and tissue contrast in the orbitofrontal cortex and parahippocampal gyrus; (2) greater changes in markers of tissue damage in regions that are functionally connected to the primary olfactory cortex; and (3) a greater reduction in global brain size in the SARS-CoV-2 cases. The participants who were infected with SARS-CoV-2 also showed on average a greater cognitive decline between the two time points. Importantly, these imaging and cognitive longitudinal effects were still observed after excluding the 15 patients who had been hospitalised. These mainly limbic brain imaging results may be the in vivo hallmarks of a degenerative spread of the disease through olfactory pathways, of neuroinflammatory events, or of the loss of sensory input due to anosmia. Whether this deleterious effect can be partially reversed, or whether these effects will persist in the long term, remains to be investigated with additional follow-up.


Subject(s)
Brain , COVID-19 , Aged , Aged, 80 and over , Biological Specimen Banks , Brain/diagnostic imaging , Brain/virology , COVID-19/pathology , Humans , Magnetic Resonance Imaging , Middle Aged , SARS-CoV-2 , Smell , United Kingdom/epidemiology
4.
Microb Genom ; 6(7)2020 07.
Article in English | MEDLINE | ID: covidwho-607005

ABSTRACT

UK Biobank (UKB) is an international health resource enabling research into the genetic and lifestyle determinants of common diseases of middle and older age. It comprises 500 000 participants. Public Health England's Second Generation Surveillance System is a centralized microbiology database covering English clinical diagnostics laboratories that provides national surveillance of legally notifiable infections, bacterial isolations and antimicrobial resistance. We previously developed secure, pseudonymized, individual-level linkage of these systems. In this study, we implemented rapid dynamic linkage, which allows us to provide a regular feed of new COVID-19 (SARS-CoV-2) test results to UKB to facilitate rapid and urgent research into the epidemiological and human genetic risk factors for severe infection in the cohort. Here, we have characterized the first 1352 cases of COVID-19 in UKB participants, of whom 895 met our working definition of severe COVID-19 as inpatients hospitalized on or after 16 March 2020. We found that the incidence of severe COVID-19 among UKB cases was 27.4 % lower than the general population in England, although this difference varied significantly by age and sex. The total number of UKB cases could be estimated as 0.6 % of the publicly announced number of cases in England. We considered how increasing case numbers will affect the power of genome-wide association studies. This new dynamic linkage system has further potential to facilitate the investigation of other infections and the prospective collection of microbiological cultures to create a microbiological biobank (bugbank) for studying the interaction of environment, human and microbial genetics on infection in the UKB cohort.


Subject(s)
Betacoronavirus , Clinical Laboratory Techniques , Coronavirus Infections/epidemiology , Databases, Factual , Information Storage and Retrieval , Pneumonia, Viral/epidemiology , Public Health Surveillance , Adult , Aged , Biological Specimen Banks , COVID-19 , COVID-19 Testing , Coronavirus Infections/diagnosis , Coronavirus Infections/genetics , England , Female , Genome-Wide Association Study , Humans , Incidence , Longitudinal Studies , Male , Middle Aged , Odds Ratio , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/genetics , Prospective Studies , SARS-CoV-2 , United Kingdom/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL